3,727 research outputs found

    Book Review

    Get PDF
    Reviewing Richard F. Gonda, J. Arlen Marsh and Ivan W. Louis, eds., 565 Industrial Compensation Cases, Industrial Publ. Corp

    The Mission on Which We Are Sent

    Get PDF
    The Affirmations on the Mission of the Church which The Lutheran Church - Missouri Synod adopted at the Detroit convention in 1965 are part of the evidence of the ongoing struggle of one part of the church to understand what and why the church is in the world. The struggle has not been easy nor has it been without conflict. The affirmations call us to see the church\u27s mission in terms of people rather than church structures. They compel us to wrestle with the standards of comfort and convenience by which we continually serve ourselves. They plead with us to allow our Lord to use us to bring His help and healing to men. So the affirmations state that the church is God\u27s mission and that this mission is not an optional activity but the very life concern of all of us for all men whoever and wherever they are

    A motion planner for nonholonomic mobile robots

    Get PDF
    This paper considers the problem of motion planning for a car-like robot (i.e., a mobile robot with a nonholonomic constraint whose turning radius is lower-bounded). We present a fast and exact planner for our mobile robot model, based upon recursive subdivision of a collision-free path generated by a lower-level geometric planner that ignores the motion constraints. The resultant trajectory is optimized to give a path that is of near-minimal length in its homotopy class. Our claims of high speed are supported by experimental results for implementations that assume a robot moving amid polygonal obstacles. The completeness and the complexity of the algorithm are proven using an appropriate metric in the configuration space R^2 x S^1 of the robot. This metric is defined by using the length of the shortest paths in the absence of obstacles as the distance between two configurations. We prove that the new induced topology and the classical one are the same. Although we concentrate upon the car-like robot, the generalization of these techniques leads to new theoretical issues involving sub-Riemannian geometry and to practical results for nonholonomic motion planning

    Operations analysis of Fleet battle experiments using the Battlespace Information War methodology: preliminary report

    Get PDF
    This report outlines an approach for quantitative operations analysis of aspects of Fleet Battle Experiments (FBEs) using the methodology underlying the Battlespace Information War (BAT/IW) analytical tool. The general approach of this analysis methodology is to focus on a specific experimental initiative from one or more FBEs, such as Time Critical Targeting (TCT). BAT/IW models are then tailored to the experimental situation using actual data obtained from one or more experiments and the experiment systems architecture. After the models and actual data are reconciled, further analysis tasks are undertaken, such as predictions of the effects of attack intensity, and/or of C4ISR response time reduction. BAT/IW modeling helps analyze and understand the system-level impact of sensor data quality, including timeliness, as one contributor to total operation/campaign success. BAT/IW modeling also accounts for the latency involved in processing information, including communications delays, decision time, waiting, etc. An example is developed to show how operational data obtained during FBE Foxtrot can be quantitatively analyzed to indicate important sensitivities.--Report documentation page.Approved for public release; distribution is unlimited

    Axonal diameter and density estimated with 7-Tesla hybrid diffusion imaging in transgenic Alzheimer rats

    Get PDF
    Diffusion-weighted MR imaging (DWI) is a powerful tool to study brain tissue microstructure. DWI is sensitive to subtle changes in the white matter (WM), and can provide insight into abnormal brain changes in diseases such as Alzheimer’s disease (AD). In this study, we used 7-Tesla hybrid diffusion imaging (HYDI) to scan 3 transgenic rats (line TgF344-AD; that model the full clinico-pathological spectrum of the human disease) ex vivo at 10, 15 and 24 months. We acquired 300 DWI volumes across 5 q-sampling shells (b=1000, 3000, 4000, 8000, 12000 s/mm^2). From the top three b-value shells with highest signal-to-noise ratios, we reconstructed markers of WM disease, including indices of axon density and diameter in the corpus callosum (CC) – directly quantifying processes that occur in AD. As expected, apparent anisotropy progressively decreased with age; there were also decreases in the intra- and extra-axonal MR signal along axons. Axonal diameters were larger in segments of the CC (splenium and body, but not genu), possibly indicating neuritic dystrophy – characterized by enlarged axons and dendrites as previously observed at the ultrastructural level (see Cohen et al., J. Neurosci. 2013). This was further supported by increases in MR signals trapped in glial cells, CSF and possibly other small compartments in WM structures. Finally, tractography detected fewer fibers in the CC at 10 versus 24 months of age. These novel findings offer great potential to provide technical and scientific insight into the biology of brain disease

    Reconstruction of major fibers using 7T multi-shell Hybrid Diffusion Imaging in mice

    Get PDF
    Diffusion weighted imaging (DWI) can reveal the orientation of the underlying fiber populations in the brain. High angular resolution diffusion imaging (HARDI) is increasingly used to better resolve the orientation and mixing of fibers. Here, we assessed the added value of multi-shell q-space sampling on the reconstruction of major fibers using mathematical frameworks from q-ball imaging (QBI) and generalized q-sampling imaging (GQI), as compared to diffusion tensor imaging (DTI). We scanned a healthy mouse brain using 7-Tesla 5-shell HARDI (b=1000, 3000, 4000, 8000, 12000 s/mm2), also known as hybrid diffusion imaging (HYDI). We found that QBI may provide greater reconstruction accuracy for major fibers, which improves with the addition of higher b-value shells, unlike GQI or DTI (as expected). Although QBI is a special case of GQI, the major fiber orientation in QBI was more closely related to the orientation in DTI, rather than GQI. HYDI can aid the clinical outcomes of research and especially – more advanced human and animal connectomics projects to map the brain’s neural pathways and networks

    Experimental sources of variation in avian energetics : estimated basal metabolic rate decreases with successive measurements

    Get PDF
    Basal metabolic rate (BMR) is one of the most widely used metabolic variables in endotherm ecological and evolutionary physiology. Surprisingly few studies have investigated howBMR is influenced by experimental and analytical variables over and above the standardized conditions required for minimum normothermic resting metabolism. We tested whether avian BMR is affected by habituation to the conditions experienced during laboratory gas exchange measurements by measuring BMR five times in succession in budgerigars (Melopsittacus undulatus) housed under constant temperature and photoperiod. Both the magnitude and the variability of BMR decreased significantly with repeated measurements, from 0.410 0.092 W (n p 9) during the first measurement to 0.285 0.042 W (n p 9) during the fifth measurement. Thus, estimated BMR decreased by ∼30% within individuals solely on account of the number of times they had previously experienced the experimental conditions. The most likely explanation for these results is an attenuation with repeated exposure of the acute stress response induced by birds being handled and placed in respirometry chambers. Our data suggest that habituation to experimental conditions is potentially an important determinant of observed BMR, and this source of variation needs to be taken into account in future studies of metabolic variation among individuals, populations, and species.University of Pretoriahttp://www.journals.uchicago.edu/toc/pbz/current2015-09-30hb201

    Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats

    Get PDF
    Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm^2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric “shells” when computing three distinct anisotropy maps–fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals
    corecore